Fuels and Biofuels

Proximate analysis of Coal

Introduction

Proximate Analysis includes analysis of basic things present in coal sample. It includes -

- a. Determination of % Moisture
- b. Determination of % Ash
- c. Determination of % Volatile matter
- d. Determination of % Fixed carbon

a. Determination of % Moisture

Procedure:

- 1. Weigh a clean dry and empty crucible $(W_1 gm)$
- 2. Take about 1gm of coal sample in the same crucible and weigh it again $(W_2 \text{ gm})$.
- 3. Then place the silica crucible in muffle furnace or air oven, maintained at temperature range of 105-110 °C for 1 hour.
- 4. Cool it in a desiccator and weigh it again (W₃ gm). The loss in weight corresponds to moisture.

Observations:

Observations	Value
Weight of empty crucible (W ₁)	= gm
Weight of crucible with coal sample (W ₂)	= gm
Weight of crucible with coal sample after heating	= gm
(W ₃)	
Weight of coal sample	$(W_2 - W_1) = gm$

Formula and Calculation

Percentage of moisture	= Wt. of moisture / Wt. of coal x 100
------------------------	---------------------------------------

$$= (W_2 - W_3)/(W_2 - W_1) \times 100$$

b. Determination of % Ash

Procedure:

- 1. First weigh the empty crucible (W_1 gm). Then take about 1gm of coal sample in the same crucible and weigh it again (W_2 gm).
- 2. Place the silica crucible in a muffle furnace at 750 $^{\circ}$ C for 1 hour to complete the combustion.
- Then the crucible is removed and allowed to cool in desiccators to room temperature Downloaded from- <u>www.abhijitgurav.wixsite.com/1234</u>
 For more information visit - <u>www.youtube.com/c/chemistrylearners</u>

and weigh it again (W₃ gm).

4. The amount of residue remaining in the crucible corresponds to the ash content of the coal.

Observations

Observations	Value
Weight of empty crucible (W ₁)	= gm
Weight of crucible with coal sample (W ₂)	= gm
Weight of crucible with coal sample after heating	= gm
(W ₃)	
Weight of moisture/ ash	$(W_3 - W_1) = gm$

Formula and Calculation

Percentage of ash = Wt. of ash / wt. of coal sample x 100

$$=(W_3 - W_1)/(W_2 - W_1) \times 100$$

c. Determination of % Ash

- 1. Moisture free coal is heated upto 925^oC temperature for 3-4 hrs.
- 2. It is (crucible along with coal)then kept into desiccator for cooling.
- 3. Again the weight of crucible is taken and % volatile matter is calculated as

Percentage of volatile matter = Wt. of volatile matter/ wt. of dry coal sample x 100

d. Determination of % Fixed carbon

This is actual carbon present in coal for combustion. It is calculated as

% of Fixed carbon = 100- (% Moisture + % Ash + % Volatile matter)

Significance of proximate analysis

- a. Moisture lowers the calorific value and takes more the time to burn fuel. Therefore, less the % moisture, better is the quality of coal.
- b. Ash is non-reducible byproduct formed after burning of coal. It has no calorific value. Therefore, less the % ash, better is the quality of coal.
- c. Volatile matter elongates the flame size. Therefore, calorific value decreases. Therefore, less the % Volatile Matter, better is the quality of coal.

Page **3** of **3**

Fuels and Biofuels

d. Fixed carbon is giving calorific value. Therefore, more the % fixed carbon, better is the quality of coal.

Downloaded from- <u>www.abhijitgurav.wixsite.com/1234</u> For more information visit – <u>www.youtube.com/c/chemistrylearners</u>