

Practical Experiment Instruction Sheet

EXPERIMENT TITLE : Conductometric Titration

EXPERIMENT NO. :6 MIT(T)/BSH/Engg. Chemistry Lab/ Engg. Chemistry /Manual No

Class: F.Y. BTech.	DEPARTMENT: Basic Sciences & Humanity			
LABORATORY : Engg. Chemistry		Location:-	PART:	PAGE:

Aim:-Determination of conductance by conductometric titration.

Apparatus:- Conductometer ,conductivity cell, beaker, burette, burette stand, etc.

Chemicals:- 0.1 N HCl solution, 0.1 N NaOH solution, distilled water, etc.

Theory:-

- 1. Conductivity deals with the measurement of electrical conductance of electrolytic solution.
- 2. Their electrolytic solution conduct electric current due to the movements of ions (cations and anions) towards oppositely charged electrodes.
- 3. Conductometric titration in the volumetric analysis based upon the measurement of the conductance during the course of titration.
- 4. Conductance of an aqueous solution containing an electrolyte depends on the:
 - a. Number of free ions.
 - b. Charge on the free ions
 - c. Mobility of free ions.
- 5. Conductometric titration are of two types:
 - a. Acid base titration
 - b. Precipitation titration
- 6. Acid base titration are of four types:
 - a. Strong acid + Strong base
 - b. Weak acid + Strong base
 - c. Strong acid + weak base
 - d. Weak acid +weak base

Titration of strong acid (HCl) with strong base (NaOH)

Procedure:- Settings-

- 1. Determine the cell constants of given conductivity cell (calibration of conductivity cell).
- 2. Rinse the conductivity cell with the solution whose conductivity is o be measured.
- 3. Wash the conductivity cell with distilled water and then rinse it with the given HCl solution. Deep the cell in the solution taken in beaker (HCl).
- 4. Connect the conductivity cell to Conductometer.
- 5. (Set the function switch to display position it must be read=1, cell Constant of temperature should be adjusted or set first).

Actual procedure-

- 1. 20ml of the given HCl solution is taken into a 100ml beaker.
- 2. And the burette is filled with NaOH solution and 1ml of it is added into a beaker beaker containing HCl.
- 3. The conductance of the solution is determined or observed by continuous stirring.
- 4. Same procedure is repeated (i.e. addition of 1ml of NaOH) and conductance is noted.
- 5. Such 12-15 readings are taken.

Observation:-

- 1. The conductance measurement is found to be decreased progressively.
- 2. This decrease in conductance continues until the endpoint of titration i.e. equivalence point.
- 3. At the end point concentration H^+ ions is negligible.
- 4. Beyond this point, on adding NaOH, there is a stip rise in conductance.
- 5. Thus on plotting the conductance against the volume of NaOH added, a 'V' shaped graph is obtained and the minimum point in this graph denotes the end point. This point is actually the intersection of two lines.

Precautions:-

- 1. The conductivity cell should be handled very carefully as it is very delicate.
- 2. Stirring should be done after each addition of the titrant.

Advantages or applications of conductance titration:-

- 1. This method can be used to very dilute solutions.
- 2. Gives very accurate end points with an error of $\pm 0.5\%$
- 3. These titrations are very useful in case of coloured solutions which cannot be titrated by ordinary volumetric method because colour change of indicator is not clear.
- 4. Useful of titrating weak acids against weak bases, which otherwise do not give sharp end points.
- 5. NO keen observation is necessary near the end point since it is detected graphically.

Observation table:-

Volume of unknown acid (v_1) =20 ml.

Sr	Volume of NaOH	Specific conductance
	Added in (ml)	(mho/cm)
no.		
1.		
2.		
3.		
4.		
5.		
6.		
7.		
8.		
9.		
10.		
11.		
12.		
13.		
14.		
15.		

Calculations:- $n_1v_1(HCl) = n_2v_2(NaOH)$ $n_1 = \frac{0.1 \times v_2}{20}$

Strength of solution = Eq. wt × Normality

= 36.5 × *n*₁

= _____ g/lit

Conclusion:- Conductance of given strong acid (HCl) decreases first with addition of strong base (NaOH) and after end point (i.e Neutralization of acid) conductance increases due to the strong base (NaOH).